PCB DESIGN FLOW

A design flow is a rough guide for turning a concept into a real, live working system

Inspiration (Concept)

Implementation (Working System)

"An air-deployable motion sensor with 10 meter range and 6 month lifetime."

Starting with the end in mind: a printed circuit board

The cross-section of a PCB shows its layered construction

A practical PCB design flow that is action-oriented and artifact-focused

^{*}evaluate through models, prototypes, and discussions

Brainstorming

- Goal: generate as many ideas as possible!
- Use the "needs" as the rough guide
- Do not (yet) be limited by constraints or formal requirements
- Ideally, brainstorm in a group so diversity of perspectives emerge

Brainstorming example: energy metering in sensor networks

- Need: measure the *energy* consumed by a mote
- Brainstorm
- Resulting design concepts
 - Single-chip battery "fuel gauge"
 - High-side sense resistor + signal processing
 - Low-side sense resistor + signal processing
 - Pulse-frequency modulated switching regulator

Requirements and constraints address the myriad of important details that the system must satisfy

- Requirements address:
 - Functionality
 - Performance
 - Usability
 - Reliability
 - Maintainability
 - Budgetary
- Requirements may be at odds!

 Use correlation matrix to sort things out in this case

Evaluation

- Goal: identify best candidates to take forward
- Use requirements and constraints as the metric
- Get buy-in from stakeholders on decisions
- Also consider
 - Time-to-market
 - Economics
 - Non-recurring engineering (NRE) costs
 - Unit cost
 - Familiarity
 - Second-source options
- If none of the candidates pass, two options
 - Go back to brainstorming
 - Adjust the requirements (hard to change needs though)

Evaluation example: energy metering in sensor networks

Re	quirements:	Low	High	Low	High	Low
		Cost	<u>Accu</u>	<u>Power</u>	Rez	<u>Pert</u> .
De	sign concepts					
	Energy meter IC	N	Υ	N	Υ	Υ
	High-side sense resistor + signal processing	N	Y	N	Y	Y
	Low-side sense resistor + signal processing	Υ	Y	Y	Υ	N
	PFM switching regulator	Υ	Υ	Υ	Υ	Υ

Evaluation example: energy metering in sensor networks

Accuracy / linearity are really important for an instrument

Sometimes a single experiment or figure says a lot

Design

- Translate a concept into a block diagram
- Translate a block diagram into components
- Top-down
 - Start at a high-level and recursively decompose
 - Clearly define subsystem functionality
 - Clearly define subsystem interfaces
- Bottom-up
 - Start with building blocks and increasing integrate
 - Add "glue logic" between building blocks to create
- Combination
 - Good for complex designs with high-risk subsystems

Design II

- Design can be difficult
- Many important decisions must be made
 - Analog or digital sensing?
 - 3.3V or 5.0V power supply?
 - Single-chip or discrete parts?
- Many tradeoffs must be analyzed
 - Higher resolution or lower power?
 - Higher bit-rate or longer range, given the same power?
- Decisions may be coupled and far-ranging
- One change can ripple through the entire design
 - Avoid such designs, if possible
 - Difficult in complex, highly-optimized designs

Design example: energy metering in sensor networks

Schematic capture turns a block diagram into a detail design

- Parts selection
 - In library?
 - Yes: great, just use it! (BUT VERIFY FIRST!)
 - No: must create a schematic symbol.
 - In stock?
 - Yes: great, can use it!
 - No: pick a different park (VERIFY LEADTIME)
 - Under budget?
 - Right voltage? Beware: 1.8V, 3.3V, 5.0V
- Rough floorplanning
- Place the parts
- Connect the parts
- Layout guidelines (e.g. 50 ohm traces, etc.)

The schematic captures the logical circuit design

Layout is the process of transforming a schematic (netlist) into a set of Gerber and drill files suitable for manufacturing

- Input: schematic (or netlist)
- Uses: part libraries
- Outputs
 - Gerbers photoplots (top, bottom, middle layers)
 - Copper
 - Soldermask
 - Silkscreen
 - NC drill files
 - Aperture
 - X-Y locations
 - Manufacturing Drawings
 - Part name & locations
 - Pick & place file

- Actions
 - Create parts
 - Define board outline
 - Floorplanning
 - Define layers
 - Parts placement
 - Manual routing (ground/supply planes, RF signals, etc.)
 - Auto-routing (non-critical signals)
 - Design rule check (DRC)

Layout constraints can affect the board size, component placement, and layer selection

- Constraints are requirements that limit the design space (this can be a very good thing)
- Examples
 - The humidity sensor must be exposed
 - The circuit must conform to a given footprint
 - The system must operate from a 3V power supply
- Some constraints are hard to satisfy yet easy to relax...if you communicate well with others.
 Passive/aggressive is always a bad a idea here!
- Advice: the requirement "make it as small as possible" is not a constraint. Rather, it is a recipe for a highly-coupled, painful design.

Layout: board house capabilities, external constraints, and regulatory standards all affect the board layout

CAPABILITY FR4, Rogers4003/4350, GETEK, High Tg FR4 Materials Flammability UL 94V-0 Minimum Line/Space 4/4 mils Maximum Board Sizes 18" x 24" Minimum Hole Size 8 mils(finished PTH) Minimum Pad Size 18 mils Copper Weight 1/2 oz, 1 oz , 2 oz, 3 oz, 4 oz Maximum Layer Count 14 (in production) Green, Yellow, Black, Blue, Red, White Soldermask Color Registration +/- 5 mils(Max.) 0.008" for 2-layer, 0.016" for 4-layer, 0.019" for 6-layer Minimum Board Thickness Impedance Control +/- 10%(in house TDR tester) Surface Finish HAL, Immersion Gold, Immersion Tin, ENTEK Dimensional Tolerance +/- 0.005" Aspect Ratio <8:1 Annular Ring 0.002" Blind/Bried Vias Sequential Lamination Electroplating Gold up to 30u" plus

RoHS Restricted Materials

Material & Toxicological Profile (pdf)	Maximum Concer
Lead (Pb)	0.1% by weight
Mercury (Hg)	0.1% by weight
Cadmium (Cd)	0.01% by weight
Hexavalent Chromium (Cr-VI)	0.1% by weight
Polybrominated Biphenyls (PBB)	0.1% by weight
Polybrominated Diphenyl Ethers (PBDE)	0.1% by weight

Floorplanning captures the desired part locations

The auto-router places tracks on the board, saving time

Layout tips

- Teaching layout is a bit like teaching painting
- Suppy/Ground planes
 - Use a ground plane (or ground pour) if possible
 - Use a star topology for distributing power
 - Split analog and digital grounds if needed
 - Use thick power lines if no supply planes
 - Place bypass capacitors close to all ICs
- Layers
 - Two is cheap

There are lots of design flows in the literature but they are awfully general

